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—We showjthat solutions of the Cauchy problem for systems of two

conggrvation laws decay in the supnorm at a rate that depends only on the
L

L/ norm of the initial data. This implies that the dissipation due to the

entropy dominates the nonlinearities in the problem at a rate depending only
on the Lf: norm of the initial data., Our results apply to any BV initial
data ug satisfying ug(t =) = O,hé7nd Sup{uy(*)} << 1. The problem of
decay with a rate independent of t support of the initial data is central to
the issue of continuous depen ce in gystems of conservation laws because of
the scale invariance of equations. Indeed, our result implies that the
constant st:;:/ig/stigié with respect to perturbations in L;oc' This is the
first gggbi y result in an IP norm for systems of conservation laws. It
1§,c§GE1a1 that we estimate decay in the supnorm since the total variation

dbes not decay at a rate independent of the support of the initial data.

N

“The main estimate requires an analysis of approximate characteristics for
its proof. A general framework is developed for the study of approximate
characteristics, and the main estimate is obtained for an arbitrary number of

equations. -
e’
AMS (MOS) Subject Classifications: 65M10, 76N99, 35L65, 35L67

~ Key Words: Riemann Problem, Random Choice Method, Decay, Stability,
Continuous Dependence, Conservation Lawei)Cauchy Problem.
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SIGNIFICANCE AND EXPLANATION

A system of two conservation laws in one dimension is a set of first

order nonlinear partial differential equations of the form

u + f(u,v)x =0 ,

t
(N

vy, t gluwv), =0 ,
where (u,v) is a vector function of (x,t}), x € R, t » 0. The Cauchy
problem asks for a solution of (1) given the "initial" values of u and v
at time t = 0. Equations of type (1) arise, for example, in gas dynamics
where they express the conservation of quantities like mass, momentum and
energy, when diffusion is neglected. Typically, smooth solutions of (1)
cannot be found. This is due to the formation of shock waves. Shock waves
are the mechanism by which entropy is dissipated in solutions of (1).
Moreover, this mechanism is isolated in equations of type (1) since this is
the only dissipative mechanism occurring in solutions of (1). The results in

this paper imply that the dissipation of entropy is a dominant effect in the

senge that it forces solutions to decay to zero at an estimable rate.

The responsibility for the wording and views expressed in this descriptive
summary lieg with MRC, and not with the author of this report.
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§¢1. INTRODUCTION

Consider the Cauchy problem for a system of n conservation laws

u + f(u)x =0 ,

t

(H)
u(x,0) = uU(X) ’

where u = (Wqpeee,u ), and x € R, t € R, we study decay and continuous dependence in

solutions of (1) which are obtained as limits of approximate solutions generated by the

. v w.v v e =
P %% T e T Y T YV Y s s W v P E" R

random choice method of Glimm [6). Thus we are interested in solutions that take values in
a neighborhood U of some constant state u. We assume that df, <the matrix derivative

of f, is smooth, has real and distinct eigenvalues A1 < Az Ceoseg An in U, and that

CER A

A A M

Vkp * R >0 in U [9]). Here Rp denotes the unit right eigenvector corresponding to
eigenvalue A . By changing the frame or translating the flux function £ if necessary,

we assume without loss of generality that G =0 and Ap >0, p= T,00e,n.

e e T

Let u(x,t) denote a weak solution of (1) which is a limit of approximate solutions

)

¢

generated by the random choice method. The main result of this paper is the following

theorem which is proved in the case n = 2:

THEQREM (1) For every V > 1 and 0 < 0 < 1 there exists constants & = 8(V) < 1 and

Cc(o) > 1 such that, if uo(-) satisfies

TAEEE NSO NV T T

(2) uo(t ®)y =0 ,
(3) 'x-v{uo(-)} <v ,
and
(4) Iu0(°)ls <6 ,
then
-
t 2+0
< —
(s) e, e)ig C(O){loq[nu(.)l 11
0 1
L
for all t > Iuo(-)l 1" Here constants depend only on f and their arguments, "S
L
denotes supnorm and | | 1 denotes L' norm; i.e.

L

* Sponsored by the United States Army under Contract No. DAAG29-80~C-0041. This material
is based upon work supported by the National Science Foundation under Grant No.
DMS-8210950, Mod. 1.
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hug(e)lg = Sug+. [wg)|

'u°(.“:.‘ 2 [T, lugtaax .

If we f£ix the initial data uo(') and let t + », then (5) gives the decay of the
solution u(+,t) in the supnorm at a rate independent of the support of the data. Said
differently, (5) verifies that the dissipation in solutions of (1) due to increasing
entropy overcomes the nonlinearities 15 the problem at a rate depending only on the L‘-norm
of the initial data [cf (9]]. If we fix t and take a sequence of initial data tending to
zero in L‘, then (5) gives a rate né whiéh the supnorm at time t tends to zero with
the L' norm of the initial data. Because éhe values of u at time t have a bounded
domain of dependence, (5) also gives a rate at which u(+,t) tends to zero in L;oc as
the initial data tends to zero in L;oc' This is tﬁe first continuous deb.nbence result
for systems in the norm L‘. a

Other decay results for systems have been obtained by Glimm/Lax, DiPerna and Liu [4,

5, 7, 10-14). For these results decay is obtained by means of estimates for the decay of

the total variation. 1In the case of nonpariqdic initial data, a rate of decay in the total -

variation is obtained only in the presence of compactly supported data, and the rate
depends on the support of the data. 1t is crucial in (5) that we estimate the decay in the
supnorm instead of the total variation norm because simple examples show that the total
variation does not decay at a rate that depends only on the ! norm of'the initial data.
our interest in the L! norm in (5) stems from an interest in the problem of
stability, by which we mean the problem of the continuous dependence of solutions on the
initial data. To put the issue of stability into perspective, we make the following
definitions: we say that solutions of (1) are strongly stable in a norm N 1 if there is
a constant C > 0 such that
(6) lu(s,t) = v(e,e)0 < Clu(+,0) - v(+,0)F ,
for all weak solutions u and v. We say that solutions of (1) are weakly stable in I |

with a rate if

™
[N
L}
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(7) u(e,t) = v(e,t)l < F(lu(+,0) = v(e,0)1) -

for all weak solutions u and v, where F is a fixed function satisfying 1lim F(E) = 0.
It is well known that solutions to scalar conservation laws are L‘-contractiveEI:f 8}, 1In
the language above this says that solutions of a scalar conservation law are strongly
stable in L1 with constant c = 1. Moreover, by studying solutions containing a single
shock, it is apparent that solutions of (1) are not weakly stable in the supnorm or

in the total variation norm, and are not strongly stable in any LP, p > 1. This leaves

!

as a leading candidate for studying stability in systems of conservation laws.

Estimate (5) proves that the constant state is weakly stable in Lioc’ As a further
comment, in {22] it is proven that solutions to systems are not L‘-contractive relative to
a constant state in any metric that is comnpatible with the u-space topology. This directly

implies that there is no metric D and constant ® > 0 for which the following Gronwall

type estimate holds in any neighborhood of u:

4
dt

o, o(u(x,t),oldx < o [ Dlu(x,0),Tax .

Thus, (5) gives the stability of the constant gtate in L1

. 20c in a regime where a Gronwall

inequality fails in some essential way. It is an open problem whether the constant state
1
is strongly stable in Lloc'
In the case of periodic initial data, Theorem (1) holds with uo(') replaced by the
initial data in one period. Thus (5) gives a decay in L” at a rate independent of the
period. Again, for periodic initial data, the total variation does not decay at a rate

1

depending only on the L norm of the data, and for the previous decay results the rate of

decay in the total variation depends on the length of the period in the initial data. Our

)

methods also give directly that periodic data decays like where P is the length of

a period. This however, is not sharp in light of the e=1 decay rate obtained by

Glimm/Lax [7]).

We now indicate the proof of Theorem (1). Theorem (1) is obtained by estimating the

decay of the quadratic functional ¢ which was constructed by Glimm in {6]. Specifically,

let h denote a mesh length in x, and let uh(x.t) denote a corresponding approximate




solution generated from initial data uo(') by the random choice method. Roughly

speaking, the values of ul

at time t are obtained by approximating the actual solution
by a.set {Yl} of simple waves each of which moves at close to characteristic speed. The
function Q(t) is defined by

(8) gte) = 2y | |yl

where, again roughly, the sum is over all pairs of waves at time t that will interact at
some later time due to differences in the wave speeds. (In the words of Glimm, summed over
all "approaching” waves.) Here, |Y1| in (8) denotes the strength of the wave Yy (for
details see sections (2) and (3)). 1In [6] it is proved that { is a positive decreasing
function of time. Heuristically, this is because a term is lost from the sum in (8)
whenever two waves cross each other in the xt-plane. The functional Q measures the
potential for interaction of waves, but contains no information regarding the time at which
interactions will occur. Theorem (1) is a corollary of the following technical lemma which
is a sharp estimate for the rate at which Q decreases as a function of the supnorm and
the L' norm. For this lemma, assume that n = 2 (or that there exists a coordinate

system of Riemann invariants).

LEMMA (2A): Let Q denote the quadratic functional associated with an arbitrary

approximate solution ub

which is generated from initial data uo(') that satisfies
conditions (2) - (4) of Theorem (1). Then there exists a constant G > 0 depending only

on f and V and a mesh length hj = ho(E,M) such that, if

(9) luh(',O)Is >-& ,
(10) : 1P, 000 LT

L
and
(1) h<ng .
then

2 1
(12) 0(0) - Q(e(GM)%) > 5 -

(GM)

-4-
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In words, (12) states that ¢ will decrease by an amount on the order of the supnorm
squared in a time which is on the order of the LY-norm divided by the supnorm squared. For
the case n > 2 we obtain (12) under the assumption that the total variation of uo(-) is

small [cf. 6].

LEMMA (2B): If n > 2, then there exists V << 1 such that, if uo(-) satisfies (2) and
{3) of Theorem (1), then the conclusions of Lemma (2A) hold.

Tn the case of periodic initial data, lemmas (2) hold with “0(°) replaced by the
initial data in each period.

The proof of Lemma (2) is given in section 6. (See Theorem 6.3 for a detailed
restatement of Lemma 2.) The proof is quite technical and uses the theory of wave
tracing. The theory of wave tracing was developed by Liu to prove that the random choice
method converges weakly so long as the sample sequence is equidistributed [15]. Wave
tracing is a method of keeping track of left and right states on approximate
characteristics [1, 4, 5, 7, 10, 15, 16). Previous decay results for systems use the
theory of approximate characteristics, bhuh rely on global mechanisms and do not require
keeping track of left and right states. (It is importanl, however, to recognize that in
[5], these methods are localized, and decay in ¢ is used to control decay in the total
variation for non-compactly supported data. Of course, no rate can be obtained for decay
in the total variation.) Here we develop the theory of wave tracing from what we believe
is a simpler set of definitions and a simpler notation than has been previously given. The
presant4lion is general, and essentially self contained. Motivations for the constructions
can be found in [15, 16].

We now deduce Theorem (1) from Lemma (2A) using the basic results of Glimm. The
remainder of this paper is then devoted to the proof of Lemma (2). We first give a precise

statement of the results in {6]. (See [23) for a proof of the supnorm estimates.)

LEMMA (GL): Assume the u; satisfies the conditions (2), (3) and (4) of Theorem (1).

Then each approximate solution ab is defined for every h > 0 and t > 0 and, moreover,

there axistyg Gy > 0 suchk that

Lo Rl S < i g - AL S M - St e A sl el sk ek o

Chal




(13) wiu(e, )} < G, ™{ug(+)}

(14) Iuh(-,t)ls < Golug ()1

(15) 1abPe,t,) = uble,e 01 . <G (h+ [t -t [}
4! AL I 27t

and

(16) Rity - Q(ty) < 0

for all t4 < ty. (From here on out we use Gp to denote a generic constant that depends
only on V and f.)

In the case of arbitrary n, the results in (6] are that (13), (15) and (16) hold so
long as V is sufficiently small. The reason we can obtain (5) in the case n = 2 and
not n > 2 is that we use (14), a result that is not known for n > 2. (For n > 2 one
can show by our methods that thare exists a sequence of times tj + » for which (5)
holds.)

So assume that lemma (2A) and the assumptions of Theorem (1) hold. Let M > 1 be
given. We estimate the time at which Iuh(-,t)ls < J for h € hye Let Gg > 1 be large

M

“n Gy = Gy
and let
(18) N ((GM)?] + 9

where [ ] denotes “greatest integer in". Define the times t4,...,ty between which Q
1 N

decreases by an amount (G‘M)'2 as follows:

(19) tg0 ,
= 1
toer 2 8up{t > £ 1 QUE +) - Q(r) < =} -
(G1M)

Def ine

., N PO

(20) En g hu( ltn+)| 1 .

L
Ter. m € N he that smallest integer for which
2
(21 tpey = tp > E (G M)

if such an integer exists. Othurwise let m = N. Now if t, < =, then Lemma (2A) implies

that

(22) Iuh(-,tmﬂls < T;'Lu .
0

-6 =
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To see this, note that the contrapositive of lemma (2A) states that if
1

(Gm) 2
uh(',O) replaced by u (',tm+) and M replaced by GpM. (Note that if m = N and

¢« then Iuh(-.O)ls < l. If tp < «, then this applies with

(o) ~ wtetam?) < u

ty ¢ ®, then (21) holds in this case because Q can jincur no more than N decreases of
magnitude (GM)~2.) Thus if t, < =, then by (14)

h 1
fu ("t).s < =

for all t > t, as stated.
It remains only to estimate ¢t,. We show that

(6, M)
(23) tm < (GZM) eo

where G, = 2GyGq. Withoat loss of generality, assume that t4 > e and ty>h =m0 that
(15) gives
(24) Gn < Gotn ’

where again we take G, to be generic. Thus if n < m,

2
(25) tnet - tn € £ (6 M%< Goriam?
80 that

2
(26) taey € (1466050 .

By induction this implies that

2, m~1
ty ¢ {1 +6,(6.M) } t,

2,m~1 2
< {1 +6,66,M7) €o(G4M)
< {1 +6.6,04%

071 0

2,N

(27) < {1+ GO(G1M) } €y
2
2 (G1M)

< {1+ Gy (G M) } €,

6, M2
< (GZM) €5

where G, = 2G4Gq- Thus we have that
h 1
(28) fu ( ,t)|s<-ﬁ

so long as

-
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(G.M)2

2

t > (G,M) g, -

(G,M)?
In particular, let t = (GyM) and choose 0 < ¢ < 1. Then
(29) log[E-] = (6. M) %10g(6.M) < (Clo)M)2*O
5 2 2
for some C(0) > 0. Thus
-
ctor{log(E=)} 295> 1 w0 .
CH M s

Now if u is a limit of approximate solutions uh as h + 0, then it follows that

1P (s,0)1

* lu . (*)} |, and we conclude that
L1 0 L1

1
t T 2+
(31) Tute,e)lg < C(O){log[wl}
L

This completes the proof of Theorem (1).

In the case of periodic data, the estimate (31) is obtained in the same manner by
replacing ug by the initial data in one period. In this case C{o) is independent of
the period. For periodic data we can also use Lemma (2) to obtain a rate of decay which
depends on the period, since for periodic data,

(32) e, 0 s <GP
L

where P is the length of one period. In this case we can use (32) instead of (24) and

argue as follows: if uh(‘,t) > then Lemma (2) gives

Q(t) - Q(t + GOP(G1M)2) > _‘_2 .
(G M)

U
’
G M

Since Q(0) < Gy, we see that Q can incur only GO(G1M)2 decreases of magnitude

! 5 before o(t) <
(G,M) (6,M)

3 in which case

h 1
. € —— .
hu™( 't)lS GOM

1
Thus Iuh(-,t)ls must be smaller than E;ﬁ before time T = GOP(G1M)2G0(G1M)2 z ceMd,
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This gives that

for all t » CPM?, in which case
h tv- Vs
(33) (e, )0 < c(;) .

We note that (33) is not sharp (t”1 is sharp, cf. Glimm/Lax (7]). This might be expected
since we are not invoking global mechanisms of decay as in [7].

The remainder of this paper is devoted to the proof of lemmas (2) and (3). Before
embarking on the proof, we briefly discuss the idea behind it. The idea is that, since
uglt =) = 0, if |uo(')|s = %- and luo(')l 4 = €+ then there must be a "spike" in the

L
initial data of height on the order of % in |u| and width in x on the order of ¢€M.

. 1
For example, if luu(x)l > 2 for all x € [xp,xgl, then € = Huo(')llL1 > IxB -

1
xpl e
which implies
Xg = Xp € 2Me
Thus consider the case

u xA < x < xB
uo(x) =
0 otherwise

- 1
where |u| = W XB T Xp < €M. This data resolves into four simple waves associated with

the Riemann problems [U;;] and [:,0] [cEf. §2, [9]1). Label these waves a1, °2' 81 and

32 as in figure 1.

N
, \\
u u u = O>x
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has been defined in such a way that properties (4.1) - (4.3) are satisfied. We define
MP(J+1), FP(J+1) in terms of MP(J), PP(J) and see that properties (4.1) - (4.3) hold
for Mp(J+1), FP(J+1), respectively.
To define MP(J+1) and FP(J+1), we define the sets
uiaey = (o eM I+ + 2@ = i}

and

’

Y .

£ i
eM” (I+1
Mp( )

for each i € 8. The sets MP(J+1) and FP(J+1) are then defined by

~ i
J+1) = J J-1 J+1 ,
Mp( +1) {MP( Y n M(3-1}u L Mp( )}

i
FP(J+1) = {y2 : L€ MP(J+1)} .
So fix i e Z. Define
(4.12) L,z=1{ze MP(J) : 2(J) = i, sgn(R) # sgn(yi;j)} .

p =
1f YiJ 0, then define

i
Motaen) 2 L,

i .
FP(J+1) {Yl : e} .

P
So assume Y, # 0. Let {20,---.la_1} E.Mp(J) denote the indices in MP(J)

satisfying

lk(J) =i ’

= P
sgn(lk) sgn{Yij} ’

and ordered so that lk-1 < lk’ 1 <k € a-1, in the sense of Property (4.1). Define

= P
\JL = L(YiJ) [
= b
ug = R(Yij) v
k-1

0 =0, 0 = ) Yg (tg=), k=0,..00a
8=0 8

Uy H T(Ok; uL) .

-23-




Property (4.3) expresses the fact that characteristics trace nonzero elementary waves

of a given family and sign:

PROPERTY (4.3): If i e MP(J), then the signed strength Yl(t) of the characteristic
Yy, 1s constant and nonzero in [tz,tl)- We write
(4.11) sgn{Yl(t)} z sgn(l) .
For convenience, we set
Yglt) =0

for t & [tg,tl)-

We now define MP(J) and FP(J) by induction on J. We simultaneocusly verify
properties (4.1) - (4.3) which are assumed in the induction step.

First assume J = 1. Define

Mot = (28 = ¥B3 0, p = 1,2, = L,R} ,

where 29 is defined by

i
zg(m =i ,

i if q=1
IXYE)) -{
i b8

i+1 if gq=R .

Then for 0 € ¢t < k = ty, and Yfg ¥ 0, define

L . pa
uzq(t) L(Yio) .

i

R - pq
ulq(t) R(Yio)
i
It is easy to verify that properties 1, 2 and 3 hold for MP(1) and Fp(1).
Now assume for induction that MP(J) g_ﬁ(J) has been defined, and that for every
M
L e 1p(J).

L R
Yl[t] = (ug(t),uz(t))

-22-
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UR E ng (so that, e.g. up = T (c fay ))e. Then for tj <t <« tj+1,
L
u, {(t) =u B
20 L
R =
uy (t) = “R ’
a
and
L
up () =up (€)= T(e i)
k-1 k
where o € (0,0.) and |0k+1| > lokl, 1 <k € a-1. We define
(4.6) YE (t) = ok+1 - ok .

k
(i.e., round brackets around t to distinguish it from Yl[t]) to be the signed strength

of the characteristic Y, at time t € [tj,tj*1), 1 ¢ k € a=-1. Moreover, for o e (0,1)
k
and t € [tj,tj+1), we define

g -
(4.7) uzk(t) £ T(ok + o(ok+

for 1 < k < a~1. Note that if Property (4.2) holds, then (4.6) and (4.7) define Yl(t)

1" uk): ug,)

and ug(t) for all 2f e MP(J), t <ty We use (4.7) to define two characteristics

Y
2L
o
and Y o corresponding to each o € (0,1) and each £ € MP(J) satisfying 2(J) = i, as
o
follows:
2(3) if j < J-1
(4.8) 23(j) ={ i if §=J,q=1L
it if j=J,q=R ,

(4.9) Y L[e] = (upte),ufeen

2

o

- g R

(4.10) Y R[t] = (“l(t)'uk(t)) .

£

\]
(I.e., © determines a splitting of the characteristic Yy into a characteristic vy L of

la
strength 0o v,(t) and a characteristic y p of strength (1’°)Yl(t))'
£
o

-21=
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n
M(J) = U MP(J) ’
p=1
the RHS being a disjoint union. Corresponding to each L € MP(J) is the characteristic

L R
Yo = ‘“z'“z’ e FP(J) ,

0 1 - L R
each entry being a function of t for t, <t <t <ty We let Ylltl H (ul(t].ullt])
denote the value of Yy at time t. The functions ut[t), ui[t] (the left and right
states of the characterisitcs Yl at time t) are constant on intervals tj €t < tj,1
for jg <3< jl- T'(J) is the disjoint union

n
Mgy = v T (J) .
p1 P
0,1
'ty
Before defining M(J) and T(J) precisely, we first list three properties

For convenience we set Ylltj = 0 for ¢t ﬁ![t ).

(properties (4.1), (4.2) and (4.3)) which the characteristics satisfy. Then for
p=1%...,n we simultanecusly define Mp(J), rle), and verify properties (4.1) - (4.3)
by induction on J.

Property (4.1) states that each sget MP(J), p=™ 1,...,n is partially ordered, and

expresses the fact that characteristics ot the same tamily never cross:

PROPERTY (4.1): If L4, &y € M (J), then for every
. : 1
(4.4) se ) 10 B9 a0
1 1 2 2
1 1
we have that either £.(3) < £.(3) or £.(3) < £ _(3). 1If [jo 3, 1 n [30 ¢J, 1 ¥ # ana
1 2 2 1 11 12 12 l\
21(3) < zz(j) for 3 satisfying (4.4), then we say that 11 < 12 (or L4 lies to the
left of zz)l
Property (4.2) states that the left and right states of the p-~characteristics

L e h&(d) that satisfy #(j) = 41, j < J, partition the p-wave curve Tp(',L(ij))

p )
between L(Yij) and R(Yij).

PROPERTY (4.2): let i € 2, j € (0,J~1] be such that yfj ¥ 0. Let {fg,...,4, ) be

a=-1

the set of p-characteristics £ € MP(J) satisfying &(3j) = i, and ordered so that

£, € f4,4 in the sense of Property (4.1). Let wyy = L(ij), u R(ij) and let

R
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characteristics in detail.

Let
30,35 = 3%3%1,...,3N)
where jo < j1 are in the set {0,1,...,J}. Let
(4.1) B(3%3Y = {2 : m3%3" » 2 ¢ 205) - 23-0) e {0,1}} .

For each element of & € ﬁ(jolj1), define the function

(4.2) LI [t‘o,t.1] + R
J J

as follows:

- 0. . 1
"z‘tj) X5 j" <3 <3,

xz(t) = xg(tj) + [xz(t - xl(tj’]h' t, <t<t

j+1) 3 j+1

Thus each element £ € ﬂ(jo.j1) corresponds to a continuous, timelike, piecewise linear

curve in the xt-plane given by the graph of Xye Note that the graph of x, is defined in
[tjo,tj1] and connects successive mesh points; i.e., the slope of the curve is either 0

or 5. If j, t is outside the domain of £, x then we write £{j) = g, xl(t) - d,

h l'
respectively.
Let
(4.3) M= v Haah .
0<j°<j’<a

Then for £ € ﬂ(J), define j:. j; to be the positive integers such that
vefgs) -
0 . 1.
Let t, =t ,,t, =t
Iy 3y

We presently define the set M(J) of indices for the characteristics, as well as the

set [(J) of characteristics, by induction on J. For p= 1,...,n, the set of indices
for the p~characteristics is a set
Moy e My,

and
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§4. DEFINITION OF APPROXIMATE CHARACTERISTICS

In this section we define the set of approximate characteristics (heretofor referred
to as "characteristics") associated with a given approximate solution ' and time level
Tj. In the next section, we study properties of the characteristics. The procedure is as
follows. We first define an index set M(J) for the timelike piecewise linear curves that
connect successive mesh points (xi,tj) in the xt-plane [cf. 16]. A subset M(J) E_ﬁ(J)
corresponds to the set of characteristics. We call this the index set for the character-
istics. Each element £ € M(J) gives the position of an "elementary wave" Yy at
different time levels. The piecewise linear curves that are undefined at t = ty
correspond to elementary waves cancelled, and those undefined at t = 0 correspond to
elementary waves created by nonlinearities. We let N £ M(J) denote the index set for all
such characteristics [cf. 15].

We define the elementary wave Yy associated with £ € M(J) by assigning a left
state ut[t] and right gtate ui[t] to each time level that intersects the piecewise
linear curve defined by £. We define Yl[t] E (ut[t],ui[t]), we call TI(J) = U {Yz}

LeM(J)
the set characteristics defined for time tj. The assignment of states to characteristic
curves is done as follows: We first state three properties that the assignment should
satisfy, and then we assume the properties to hold in order to define the characteristics
at the induction step. Thus the characteristics are defined and the properties are
verified simultaneously at the induction step.

The characteristics determine a partitioning of the waves in uh appearing before
time tj. It is important to estimate the "fineness" of the partition. For Liu [15]), the
fineness is built into the procedure by an initial partitioning of the waves. The cost of
having M(J) as an index set is that we must estimate the fineness of the partition as a
function of J. This together with an estimate for the speed of characteristic curves is
given in Theorem (5.12). The remainder of section 5 is essentially devoted to obtaining
estimates for the change |u%[t] - u%[O]l, q = L,R, in terms of changes in Q and in

terms of strengths of elementary waves assigned to characteristic curves that cross the

characteristic curve of & in time (0,t3]. We now proceed with the definition of the
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then uh is well defined, takes values in U for all time, and moreover
(3.18) Vy < GoVy
-1
. -) - . < ..
(3.19) Go % Dyy € QUty=) = Qry+) € G, % 04
and
(3.20) nce,t) - wleLen | <6 h 4 [tes])

L
for all j, s, t > 0.

LEMMA (GL3). Assume that uo(tO) = 0 and that there exists a coordinate system of Riemann

invariants (eg n = 2). Then for every V > 0 there exists M > 0 such that if

(3.21) Vo<V ,

and

(3.22) lu:l <,
5 N

then ul is well defined for all t » 0, takes values in U, and (3.18) - (3.20) hold
together with

h,, h,,
(3.23) (e t) g < Gobu(e, 000 .

0
(See [23) for a proof of Lemma (GL3).)
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1]
Two waves Yij and Y{'j are said to approach at time tj if one of two conditions

holds [6]:
(3.10n) p<p' and i>1i' ,
or
1]
(3.10B) p=p' and either Y§j< 0 or Y{.j <o .

For tj €t < tj+1’ define [4)
= P p’
(3.11) o) = Z|vR,l ¥Ry
L]
where the sum is over all pairs of waves ng and Yi'j that approach at time tj-
Define
where the sum is over all pairs of approaching waves that enter the diamond Aij' and

finally define the cancellation
pL - |¥PR PL
(3.13) {IY.‘I.'1 3= 1| + IYi,j"" ‘71_1':)_1 + Yi,j-1| .

Then Cf measures the amount of p~wave cancelled from both YPR and YPL at the
3 i-1,3=1 i,3=1

interaction in A

i3°
The following lemmas are due to Glimm ([4]. Let
(3.14) vye ] |ij|
i,p
estimate the total variation of uh('.t) for tj <t tj+1'

LEMMA (GL1). If uP Uy, then for all i, 3,
P . PR - yPL
(3.14) Y35 = ¥52q,5-1 = Y5, -1 € Gopyy -
This immediately implies
« |yPR -
(3.16) I¥By 1 = I¥52y yoql + I¥E) o = 25, + oty

with |0(1)| < Gy, (Again, Gy denotes a generic conmstant.)

LEMMA (GL2). There exists a constant V > 0 and a number Gg > 0 such that if

(3.17) Vo<V

-]16=
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L(Y j ) = L(Y

13!
- h =
(3.7 nwij ) mullxy +ag bty o) L(Yij)

More generally, if (3.6) does not hold, then define

P i a >A(nhp)) . YP. >0

iy 3 13 i
pL _ P P
(3.8) Yy, : y‘i’j 1f ay > srh,) P gy <0

0 otherwise

o4 P P
Yij if ‘j < xp(L(Yij)) ' Yij >0
PR _ P P
(3.9) Yij = Ypij if 2y < '”13’ ‘ Yij <o

0 otherwise

[Here, for example, Yf? ig defined to be zero if the wave lies to the right of the sample
point x; + ash, and y*i’j if it lies to the left].
By construction, the waves ng solve the Riemann problem for u = uh(x1_1 +
1 - n

a5_qh, t5) 3 L0V ), up = uPixg + ay_qh, t5) = Rlyy,) that is posed at (x;,t5) in the
approximate solution uh(x,t). Because we assume that all wave speeds are positive, the
waves P PR pL

Yi are formed by the interaction of the waves 11_1 -1 with the waves Y -

b 3 i,3=1
at time tj_1. p = 1,2. To emphasize this, we let Aij denote the diamond of interactions
centered at (xi,tj) {6, 16]; i.e., consisting of vertex points (xj_q + aj_1h, tj).

1 1 P
(xg + aj_1h, tj), ‘*1,tj - E'k) and (xi'tj + 3 k). We say that the waves Yij which
cross the upper wedge of the diamond are formed due to the interaction of the waves
PR YPL P
Y and which cross the lower wedge of the diamond. We call Y a wave
i=1,3-1 i,3-1 i3

that leaves the diamond A and we call the nonzero waves among 75_1 3=1 and yf =1

13°

the waves that enter the diamond Aij'
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\j §3. THE RANDOM CHOICE METHOD APPROXIMATES
In this section we define the approximate solutions of (1) generated by the random
choice method of Glimm ([6), and develop notation required for the subsequent sections.
Let h be a mesh length in x, and let
(3.1) k = Ch
be the corresponding mesh length in t, C > Sup {]A (u)l} For i, jezZ, j» 0, let

ueu
1
xy £ ih, tj 2 jk. Let 3 be a sample sequence, 2 2 {‘j}j-1' 0 < ay < 1. For given
initial data uo(-) < U, define the random choice method approximate solution
uh(x,t) H uh(x,t;g) by induction on 3} as follows: First, for x €x< X;4 10 define

h h
uo(x) = uo(xi + 'i) .

(3.2) uP(x,0)
Next, assume for induction that uh(x,t) has been defined for ¢t < tj. Define

(3.3) uh(x,tj) = uh(xi+ajh,tj-) ’

and for tj <t < tj+1, define u (x,t) to be the solution of the Riemann problem posed

in (3.3) at time tj' By (3.1), ul is well defined so long as uh(x,tj) £ U for all

tj.
Let uh be any approximate solution that is well defined by the above procedure. let
Yf) denote the name as well as the signed strength of the p-wave that appears in the

solution of the Riemann problem that is posed at (xi,tj) in the approximate solution

ub, Define

P,y = P
L(Yij) left state of the wave Yij '

R(ij) S right state of the wave ij

1f Yp is a shock wave, define

i3
N
(3.5) s(Yij) £ speed of wave Yij .
If ij is a rarefaction wave, then the wave is "split” at time tj4q if
.6 ALP < a, <A (R(YP .
(3.6) ( (Yij)) ay p( (Yij))

In this case define Y?? and YE? by

=14~




A o Mot d —— L "
AR R A R D R A S o Y T T T U T

by the condition
g eYyle), 1<k<n .
We call Tp [ef [11) a wave strength measure for the p-simple waves if, for each

up, € Uy, Té(o;u is a parameterization of Vp(uL) in Uy, 0 @ R, and moreover

L)
Tp e c? with bounded third derivatives with respect to both arguments, Tp(O;uL) = vy, and
(T (u,uL))
~B2_p L

30 >0 .

(2.3)

P to be

1 L(Y*) =uw ana R(YP) = T,(01u;), then we define the signed strength of Y
g. We let YP = 0 so that "YP" denotes both the name as well as the signed strength of
the wave. By (2.3), Yp < 0 for shocks and Yp > 0 for rarefaction waves.

In the following three sections we study the random choice method approximates and
associated approximate characteristics using arbitrary T to define wave strength. In
section 6 we define T by means of a best approximation to a coordinate system of 'Riemann
invariants. The following lemma is a direct consequence of the fact that the speed s of
a shock is equal to the average characteristic speed to within terms that are quadratic in
the strength of the shock [9, 11, 17}:

LEMMA (2.1). Assume that up = Tp(o;uL), G < 0. Then the speed s of the corresponding

shock wave satisfies

s-x(—l‘—._-)+0(1)a .
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N §2. THE RIEMANN PROBLEM
The Riemann problem is the initial value problem (1) where the initial data has the

form
u for x <0
uyx) =
up for x>0 .,

We assume that the Riemann problem is uniquely solvable by the method of Lax (9] for all
uy and up 1in a neighborhood U of wu = 0. 1In particular, assume that all states that

appear in the solution of a Riemann problem posed in U 1lie in a set Uy 2 U, Assume that

Ap(u) < AP,(V) for all u, v €Uy, 1<p< p' € n, and that (1) is genuinely nonlinear in
all characteristic fields throughout Uy.

Let Rp(uL) denote the integral curve of Rp that contains the point u;. Let
R;(uL) denote the p-rarefaction curve associated with the point up; i.e., that portion

of Rp(uL) for which Xp(u) > Ap(uL). By [9] there exists a unique curve Sp(uL) that

makes C2 piecewise c3 contact with Rp(uL) at the point up, and such that for each

e ¥

u € Sp(uL) there is a scalar s such that

d

(2.1) s(u]l = [£] , .

where [u] 2 u - up, [£f] = £(u) - f(uy). Statement (2.1) is the Rankine Hugoniot jump

LN

condition, and we say that Sp(uL) is in the Hugoniot locus of up. Let S;(uL) denote

5 s gl an i

the p-shock curve associated with wu;; i.e., that portion of S;(uL) for which

Ap(u) < Ap(uL). We agsume that Ap is monotone on both Sp(uL) and Rp(uL), so that the
curve

(2.2) Yplug) = Splug) v Rp(uy)

is a c¢? piecewise c3 curve throughout Uy. For ug € Vp(uL), the Riemann problem is
solved by a p-simple wave: a shock wave if Xp(uR) < Ap(uL) and a rarefaction wave if
Ap(un) > Xp(uL) 9, 17]. We let Yp denote any p~simple wave. For given Yp, let

L(YP) denote the left state of YP and let R(YP) denote the right state. For arbitrary
states u;, up € U, the Riemann problem is solved uniquely by n simple waves Y1,---,Yn
which are separated in the xt-plane (going from left to right) by the constant states

Ug 2 up,eeesBp4qy = up. The states uy, and hence the waves YP, are uniquely determined

-12- .




Finally in section 6 we giva the proof of lemmas 2 and 3.
I wish to thank James Glimm for sharing with me many of his valuable insights. I
would also like to thank Tai Ping Liu, Fonald J. Dagse.na and I-Liang Chern for many helpful

discussions.
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It takes the longest time for waves to interact if a, = 0 or 61 = 0. Assume that

a2 = 0 and to be specific, assume that a4 is a shock wave. In this case, 51 must be a
rarefaction wave because u = 0 is both the left most and right ..ost state in the problem.
(Here we use the assumption that the waves are weak.) Now we can estimate the time at
which @ must decrease by order iiw i.e., the time it takes o, to interact with 81.

1
ne B°

But the differences in speeds between u1 and 81 at time zero is on the order of
interaction must occur within a time on the order of T where T satisfies
g - xpl =g T=0 4
i.e.,
T = Mxg - x,| = M2 .
Since two waves ey and 31 of strength on the order of ﬁ interact before time T, by
(8) we expect Q to decrease by an amount on the order 15 in time T. This is
M
Q) - m = oy L,
M

which is (12).

We implement the above idea as follows: given data uo('), we locate p-waves G and
8 whose speeds at time t = 0 differ by 0(1) & and whose x distance apart at
t =0 is 0(1) eM as above. We identify these waves at a later time by means of
approximate characteristics. We then assume for contradiction that Q does not decrease
by 0(1) 15 in time 0(1) EM2. A congsequence of this is that a and £ may be chosen so
that the :orrespondinq characteristics do not intersect before time 0(1) cuz. We finally
derive a contradiction by estimating that since the decrease in Q is small, the speed of
the characteristics a and £ agree with the speeds at time zero sufficiently to
guarantee that they intersect before time 0(1) shz. By this contradiction we can conclude
the proof of lemmas (2) and (3). In the above analysis we must keep track of left and
right states on approximate characteristics. This is essentially the wave tracing idea of
Liu [15].

In sections 2 and 3 we review the Riemann problem and the random choice method and

establish notation. In section 4 we define approximate characteristics. In section 5 we

establish properties of approximate characteristics. (This is done in a gereral setting.)
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Let o

R be defined by

ug = T(ops u) -

Note that O is defined for 0 < k < a, and

k

ng(ta-) = Opyq = s K = Opuueja-t .

Choose n 8o that

9% € (on'°n+1] *
If °R >0, let oa+1 H oR , so that then n = a, Let
P PR
up(xg+agyethetgyq) If Yig £0 and Y, ¥ 0
uy = uy, if Yfg =0
R
ug if Yig=0
and let % be define by
Uy = Tloys up) -

Now for 0 € k < n, define

2k(j) if j < J

lﬁ(j) = i if § = J¢1, o < oy
i+ if 3§ = J+4, % > Oy ¢
Yg [t] if t <ty
k
k

(“k'“k+1) if g St <ty
For k = n, define

0 if <3, n=a

L(j) if 3 < J, n< a
1§(j) (™
i i€ 3 =34, o <o,
i+1 if

j o= J+1, o, > Oy

-24-
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(o if §<a ,

L i if 3 =341, 0 <o, ,

it1 4if j

"
<
+
-
Q
v
Q

0 if t<tg, n=a ,

Y L[t] H Yl [t] if t < tJ s N < a-1 ’
n

(“n'“R) if tJ €t < tJ+1 ’
0 if tj <ty
Y glt) =

(UReupeq) Af t3 €t < tgeq o

-
n

{li : 0<k <n} ,

<n

-
[[1]

L R
ulefy

(lk :n<k<a-1} .

>

LI
L M A A

Define

*
(4.13) L z={2e L<nlJ Ln D Yplty*) # o} .

-
For t el 1let o9, q =1L, R, be defined by

q = q
uz(tJ+) T(olz uL) '

and set

w

4.14) L (el :o #(at %)
(4. #M M [ A *

Moreover if £ € L" and Oy e (02102), then let

-25-
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and set (cf. (4.8) = (4.10))

e (o0

(4.15) LMs{z‘ggzeL',c g=1L or R} .

M 1)'

Finally, we define

(4.16) Mi(a+1) =L u Lyv Lypu s

M

P
in the case Yig # 0.

Since Y, is defined for all % e M;(J+1) this completes the definition of M;(J%i}
and F;(J+1)- We leave it to the reader to verify from the above construction that
Properties (4.1) - (4.3) are satisfied by MP(J+1) and PP(J+1). This completes the
definition of the approximate characteristics.

We say that ’z e ['(J) 1is cancelled at (xi,tj) if L{(j) =i and 3§ = j;- From
(4.16) it is clear that Y, © F(J+1) is cancelled at (x;,t;) if and only if

R
Lel,uly or &= ln where n = q.

.




§5. PROPERTIES OF APPROXIMATE CHARACTERISTICS

In this section we study properties of the characteristics T(J) and index set M (J)
defined in the previous section. Let W' be a given approximate solution generated by the
random choice method from initial data up. The sets [(J) and M(J) associated with
uh are determined by the choices of ug, J, a, h and T, which we take to be given. We
let M = M(J3), T = I'(J). Throughout the remainder of the paper, 2 is taken to mean X
whenever | c M. We now develop some definitions. . et

Let N(t) denote the index set for the "null”™ characteristics that are either
cancelled or else are created by "nonlinearities” in time ([O,t], t <ty d.e,,

(5.1) Ne) = {eeM:t)>0 or t) St} .

We partition N(t) into Np(t) and N’(t) as follows:

(5.2) Nott) = {2 € N(e) = £ = 0}
(5.3) Ngtt) = (2 e Nee) = &5 > 0} o

By Property (4.3), the index set M partitions into

M=M oM
where
M* z (R eM : sgn(l) > 0} ,
M~ = {reM : sgn(2) < 0} .

we call M* (resp M~] the set of rarefaction wave [resp. shock wave] characteristics.
For p=1,.e¢,n and g =+ or =, define
(5.4) Mg TMp aMg -
Similarly, define
Npte) =Ny o ME

and set

q = n9d
NIy = NI aNge)

t.

Ne () ENg(t) nNg(t)

p# ]

T

so that N3(t) is the disjoint union of Ngo(t) u Ngn("‘

-27-
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We say that two characteristics Yo and Y, intersect at time tj if 2(3) = m(3)
and £(j=1) ¥ m(j-1). The following lemma which can be verified by induction on J
implies the uniqueness of intersection times for characteristics in different families.

LEMMA (5.1). If f e Mp ,meM and p < p', then x, - x; is a nondecreasing

p I
function of time for t e [t%,t!1 o (£%¢1).
[ A ) r’ m

The next lemma follows from Properties (4.1) through (4.3):

T, TN, LA A TR L 4t % T, TRL

LY

LEMMA (5.2). If %, me Mp . 8gn(L) ¥ sgn(m), and £ intersects m at time

t; €t <ty then either 2 € N(t) or m € N(t). Moreover, if % and m are both shock

]

wave characteristics, then there is at most one intersection time tg, and for all

1
t e [tort;) n [to,tm) we have

xg(t) = xu(t) .

Define

IYg(tj+)| - |Y£(tj-)| if 43) =41 ,

»oe e

(5.6) Nij(Z) =
0 otherwise .

We call Nij(l) the nonlinearity contributed by the characteristic Yy at the mesh point

(xi,tj) [cf. 1] 1In particular, since Y!(t) is constant on [tg,t;], we must have

.oy .
LR PRI

Nij(l) = 0 unless £ € N(tj) and either jg = 3 or j; = j, Define
1
|Y£(tj )] if () =i and j 3y

(5.7) Cij(L) =
", 0 otherwise ,
- . 0
|Y2(tj+)| if 2(3) =1 ana j =3,
(5.8) Eij(l) =
0 otherwise ,
so that
(5.9) Nij(l) = -Cij(z) + Eij(l) .

We call Cij(l) the cancellation and Eij(l) the error in the nonlinearity Nij(l). The
following proposition is a restatement of Lemma (GL1) in the language of approximate

characteristics:

-28-
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PROPOSITION (5.3). There exists GO > 0 such that
(5.10) L Ej4(2) € GoDyy

M

and

Y - cP
(5.11) {Zq cij(z)} c5] < coPyiy

MP

for p= %t,e¢e,n and q =+ or -.
{(Note that since Eij(l) = Cij(l) =0 for £ ﬂ N(tj), sumg over M and Mg can be
replaced by sums over N(tj) and Ng(tj) in (5.10) and (5.11), respectively.)

COROLLARY (5.3). There exists Gg > 0 such that

(5.12a) L Ivgl € Gpleeo) - genl
N, (t)
g
(5.12B) L olvgl <Gy -
M

Proof. If £ @Ng(t), then t} > 0. Thus by (5.5),

lY,| = E 0o o'®)
R TE Y P I

and so by Lemma (GL1)

T olv,d ¢} L E.,(8) ) G, € Gyl(0) - Q(t)) .
L 074 0
N () 13, 13 o8
[}
This verifies (5.12A). For (5.12B), note that since |Yz(t)| ig constant on [tg,tg), we
must have
L vyl € Gevg -
M\N,(ta)
Thus by (5.12A)
& lygl = 1 Ivgl + Llvgl < Govg
M\N’ (tJ) N”(tJ)
For j € J, define the set of indice pairs associated with waves that approach at
time t [cf. (3.11)]:

Ae) = AT(v) u AZ(b)

where
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A1(t) 2 {<4m> s L, me Mp for some p = 1,...,n, xz(t) < xm(t) ’

(5.13)

and either % or m is in M'} ,

(5.14)  A%(t) = {<a,m> : % € My meM,, for p<p', and x(t) >x ()} .
(Here we use <2,m> to denote the set or unordered pair {i,m}. Note also that
xg(t) < xp(t) implies xg(t) # § ¥ xu(t), so that |y (t)| ¥ 0 ¥ [y (t)]).
We call A1(t) and Az(t) the index sets for the characteristics that approach at
time t and are in the same and different families, respectively. Define
(5.15) Aij ={<2,m> : &(3j) =m(j) =i and <A,m> € A(tj-)} .

The following is a consequence of Property (4.3) together with the definition of Q and

Dij:

LEMMA (5.4): We have

(5.16) Qe) = gl tvgl
<L,m>eA(t)
and
(5.17) Dyjy= L gl Ivgl -
13 <hmeh v
From here on out, we write ] in place of 2 + etc.
<4,m>eA

Define Aj(t) and A’(t) as follows:
(5.18) Aglt) = {<2,m> € A(0) : either £ or m is in No(t)} R

(5.19) A,(r.) = {<2,m> @ A(t) : either & or m is in }\h(t)} .

LEMMA (5.5): Let A' c A(0)NA(T), T < ty. Then

{5.20) A(T) € A(0) U Ag(E)NA' .

Proof: By the definition of A(t), <i,m> € A(t) implies that Y (t) ¥ 0 and yYu(t) # O,
thus A(T) n A' = . RAssume then that % and m are in M\Ng(T) and <i,m> € A(T). It
remains only to show that <i,m> @ A(0). But by the definition of A, the only way <&,m>
could fail to be in A(0) is if £ and m intersect at two distinct times in (0,7},

which contradicts Lemma (5.1) or (5.2). For example, if £ eMp and m eMp., p <p'
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then by (5.14), x3(T) > xp(T). Thus by Lemma (5.1), xp(t) > x,(t) for all t < T.

Hence <4,m> € A(0).

LEMMA (5.6). There exists Gg > 0 such that, for all T < ty,

(5.21) L vyl Iygl < splaco) - oy
Aﬂ('r)

Proof: By (5.12) and (5.13),

AR AR A AR IR O
Aﬁr) S Y- TT R mell, ' ™ 0

LEMMA (5.7). There exists Gg > 0 such that, if

(5.22) A' c ACONAMT , T <ty ,
and
(5.23) ?‘.'IYg' vl 22
then
(5.24) Q(0) ~Qm >+ .

0

Proof: By lLemma (5.5) and (5.22) we have

A(T) S A(0) U Ag(TINA' .

10 ST S L T A S YN 7% I 2 TR O 2 N 7 R W 2 I B
Amy ¥R A TR A’m" U CRRL A

< Q(0) + Gyl(0) - Q(T)] ~L .

Combining terms, this gives

1
Qo) - QIT) > 5, L .

Since G 1is generic, this verifies (5.24).

PROPOSITION (5.8). There exists Gy > 0 such that, if

(5.25) Lo lvgl > n
N(T)

for T < t3, then
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(5.26) Q(0) - Q(T) » -é- 2 .
0

Since T is fixed here, we set Ng z Ng(T), etc.

Proof: Assume that (5.25) holds. Then for scme p € {1,...,n} and g=+ or - we
must have
(5.27) Iolvl>% .

Nz(c)

For convenience, assume q = +. By (5.7) and (5.8),

Lolglel ) sy ) ocum

+ iy  + iy |+
t) t (t
Np( Np( ) Np )
(5.28) )
< %j GgPyy *+ %j +)_ Cyqtt)
L)

where the sum on i, j is over {(i,j) : == < i < 4o, ¢t < ¢}. But Dyy ¢

3
ij
GolQ(0) - Q(t)], together with (5.27) and (5.29), implies that for some Gg > O,
. : L
{5.29) 1).'3 +), Ciyt8) 2 50 = G IR(0) = Q(e))
N_(t)
P
and so by (5.11)
q L
(5.30) zj cfj>-2; G, [Q(0) - Qe)] .
Thus we can apply (5.11) again with q = - to obtain
D) Cyyth) = L 4 < glae0) - el
i3 N (t) 13
P
or
: L
(5.31) }j +1 Cyy8) > 50 - Gpla) - el .
Np(t)
Therefore, by (5.7) and (5.8),
L IYS| > %' ) Cyyla) = E_ ). Ej4l8)
- 3 - j -
seNp(t) seNp(t) seNp(t)

L
> 5 Go[Q(O) - Qt)] .
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We now have that for some Gy > 0, both
(5.32) Loyl 2 3= - Golaco) - gce)
+
réeN
P
and
(5.338) Lol 2 3 - golaco) - o)) .
seN+
P

By Corollary (5.3), this implies that for some Gy; > 0, q =+ and =, we have
g L
(5.34) % gl > 35 = 6ol - o))
Npo

tet A' = {<r,s> : r e N;o, s e N;o}- Then by (5.2), (5.5) and the definition of A,

A’ < A(0O)\A(T). Moreover,

. . . L 2
}.lvll 1Yl 2 l+ LIl Iyl > f55 - sgteto) - aten)
teNpo seNpo
(35)
LZ
> 2 = 6,(000) - Q(t)]
4n

where we use the fact that L < v0 < Go and [Q(0) - Q(t)]) < Gy for some Gy > 0. Thus

by Lemma (5.7),

1
Q) - o1 > —— 1% - (o) - (M1 ,
G.4n
0
or
1 2
(5.35) Q(0) -~ o(T) ? 5 L .
8G n
0
Since G is generic we can take ! 2 to be Gy, 80 (5.35) establishes Proposition
8G n
0

(5.8).

Corollary (5.8). There exists G, positive so that if T < tj and

(5.36) 2(0) -~ (T) < L ,
then
A 1
(5.37) Lodvgl < GOL/Z .
N (T)
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We next define index sets for characteristics that intersect a given characteristic in

a given time interval. Let

(5.38) B,(3) = meM : m(j) = 435) ana <m> e Az(tj-)} ,
(5.39) Bp(3) 2} vl
Bl(j)
and for t4 € [tjy.g,tyq) and t € (ty2/t5249), 1let
j2
(5.40) Bylty,t,] = %1 Bp(3)

In addition, for L e M;, define

Bor(d) = (m eM; : m(j) = £(3), m(3=1) > (-1}

B;L(j) = (m eM; : m(3) = 2(3), m(3-1) > (3=} ,

Bz(j) = BlR(j)U BzL(j) .

For q = L, R or abgent, define qu[t1,t2] as in (5.40). (Note here that script B
denotes a set, while upper case B denotes a real number.)

In the next section, we use the following technical result:
PROPOSITION (5.9). Let

(5.41) M;[iL,iR] = {2 e M; : 2(0) € [4 ,i 1} .

Assume that se%\Mﬂ,Mm=im that

(5.42) ) [vgl > av
Mp[iLriR]
and that
P
(5.43) 15l <
for all i e [iL,iR] such that Ygo < 0. Then there exists Gy > 0 such that, if L < u
and
(5.44) L o ygl >,
BPRKO,T]
then
-1, 2
{5.45) Q(0) -~ QT) > Gy L™ .
—34-
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Moreover, if the hypotheses are satisfied with s(0) = iy and B;LIO,T] > L, then again

(5.45) follows.

To prove Proposition (5.9), we use the following lemma:

LEMMA (5.9). Let {Li}':=1 be a nonnegative sequence of numbers which satisfies

(5.46) 0o<L, <L ,
m
(5.47) 1 L; >3 .
i=1
Then
(5.48) ! omLo>i? .
Kicjem 3
*
. i
Proof. Let i = inf{i : ) L, >L}. Then L + <L implies that
i=1 i

] L, >M .
Lo
i=i +1
Therefore,
»

i
o onr, > (§ n)( J. 1n;)>1? .
i<j<m + 3 i=r Y iaiter t

Proof of Proposition (5.9): lLet

o
[1}]

BpR[O'T]\ N(T)

o
m

) BPR[OIT] n N(T) .

Lo ’% AP
0
Ly .% lvgl -
'}
Without loss of generality, assume Lg > 3L. If not, then Lg > L, 1in which case
Proposition (5.8) implies that

Q(0) - Q(T) » -é— 2,
0

~35=-




which gives (5.45). Let

Big = (2 € By : £(0) = i}

?

and define

L = Bl lvgl -
10

Let i" = max{i : L # 0}, and let i' = min{i",iR}. By (5.42) and (5.44),

il!

) L, >3 .
: 1
xziL

Moreover by Property (4.3), Li = -ygo if YEO < 0 and Li = 0 otherwise, so that

Ly € L for all i € liL,i"]. Thus the conditions of Lemma (5.9) hold, and we have

§ LL. > 2 .
1, €1¢i€i J

But by definition, <&,m> € A'(0)\ A"(T) if £, me Bg and £(0) ¥ m(0). Thus

A(BIN A(T) 2 X'|71| gl > ) L, 12 .
A i <ic¢jcd’
L
Therefore, by Lemma (5.7) we conclude
Qo) ~ om > = 1% .
(]

Finally, define Al[t], the speed of the characteristic Yg at time t as follows:

[V | . .
let L € Mp , bt e [tj,tj+1) n [tz'tz)' and assume that £2(j) = i. Then

’

P
X(Yij) if £ <0
Al[t] H L
A (u, (t]) if 2 >0 .
p £

We now estimate the change in ug, u? and Xl for L eM(IHIN\N).

LEMMA (5.10). Let 2 € M(J)\N(J). Then

q _ ol - .
(5.50) |u£[tj+] ulltj 1] < Gy(B, (3) + D }

23,3

. A 4] = A -] <6 j (3
(5.51) | z[tJ ] oLty 11 olBy(3) + BU(3) + Cosrag t Dz(j)'j}
for g = L, R.
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COROLLARY (5.10). Let % e M\N(T), ty <ty < T < ty. Then for g =1L and R,

q - ud -
{5.52) lufle,) - ufle 1] € Go{B [t ,e,] + [Q(t,) - @)},
1
- - - %)
(5.53) Pagie,d = e 1] <6 (B fe,,t,) # Byt e ] + [Q(t)) - Q(e))2) .
Moreover,
q - w3
(5.54) luzltzl uglt,] < GoVg
{5.55) lkz[tzl - Xl[t1]| < GV, -

Let a be a fixed equidistributed sequence, 0 < aj <1 15, 16). let I =
(c,d)C[0,1] and let 0 < Ny < Ny Define
N(I,N4q,Ny) = card{j e [N1,N2] : a. € 1} .

J
The following is a result regarding equidistributed sequences [15, 16]:

LEMMA (S.11). For every M > 1 there exists Ng > 1 such that, if N > Ng, then

_ NI
(5.56) f1| N <H
for all j < MN, I = (c,d)c[0,1], [I| = |d-c|. Moreover, for the best equidistributed

sequences,
(5.57) N(M,a) ¢ G~V
where N(M,a) denotes the infemum of all such N;, for a given a.
For LeM telt),t]), define
. 0 t
(5.58) Eg(t) = xg(t) = x,(ty) ~ [Fo A [tlac .
t
)
THEOREM (5.12). For each equidistributed sequence a there exists a positive function

§{u) € 1, 4(u) * 0 as u *» 0, such that the following two statements hold:

1t

0,1
(5.59) h € f(ulv, t € (tgotg),
then

lYg) <y

for all % e M*(J) such that £ = 0, t1 > v,
L I3
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Since zp(u:[ol) - ZP(UE[OI) is positive for £ € MY and negative for £ e M™; ana

. . 1-8 . - R .
since z, increases from m to ~m_ 9doing from x, to x at time t =0, we can write

(6.59) v, = {% 1} u {LgMp I} .

since R& Ry v {Ln N(T)}, (6.57), (6.58) and (6.59) imply

1
U -—
(6.60) R I! > (o0, M]\ X
0
where X is a set of small measure,
48 1
(6-61) m(x} < T < 1—6-37 '
where we have used (6.22) to estimate §.
By (5.59), if r € R;, then
1
(6.62) IYr' < Jem

because h < G-1

0 (-T%—M-)ZT by (6.14). Thus (6.60), (6.61) and (6.62) immediately imply the

existence of r € Ro such that (6.46) holds.
Similarly, we conclude as in {6.60) that

1
ui, > {o, ﬁ-l\x ,
S

where X satisfies (6.61), which directly implies the existence of s € SO satisfying
either (6.47), (6.48) or (6.49), (6.50).

Define [cf. (5.38) = (5.40)}]

L - .
(6.63) Rg = {r e Rg = %000 < xt(O)} '
R - .
(6.64) Sg=lre S0 2 %, (0) 2 xs(O)} .
(6.65) By = {2 € Mp. : p' #p and Y, intersects y_ in [o, T/21} .
(6.66) By = 1 vl
8
(6.67) B, = B.{0, 172}, B, = ) [y,
Br
(6.68) B, = B (0, 1721, B, = } |v,|
BZ'
(6.69) Bsq z Bsqto, T/2], By : % 'Yz,’ q =L, R or absent.

B
sq

51
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ind either

6.47) z,(ug(0]) < &
ind
. P > s
6.48) lYi of il
8
r else
6.49) ( R 0 e (1_ 1_.)
: zpluglol) e (g » 3

:nd there exists iy, ip with ip < i <ig < ip €ig such that
§
6.50) {yli’ol <

or all i EM;[iL,iR], and [(cf. (5.41)]

6.51) oIyl -
Mp[iL,is]

6.52) ) Iy, | >:—6 .
Mp[is,iR]

roof. We first verify the existence of r € R satisfying (6.46). Let
6.53) Lz{teM: x,(0) € [x,,x]} ,

:nd let I, denote the interval [zp(ut[ol), zp(u?[O])]. Let lIll denote the length of

he interval Il' Let
6.54) mz Inf{z(ug(x)) :x e [x,x1} .

ly (6.39) and (6.41),

6.55) -M < m < % .

roperty (4.3) states that the approximate characteristics partition the waves in the

h

\pproximate solution u at each time step. This together with (6.40) implies
1-6.
6.56) % Il 2 (m, —E_J .
ly Lemma (6.4),
§
6.57) Dol eg
L\Mp
nd since we assume Q(0) - Q(T) < 5 Corollary (5.8) implies
(GM)
S
6.58) ) IIzI <5 -
LON(T)
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the case when %= -Inf {2p(u:(x))} being handled analogously.
x

By (6.39) there exists a point x=(@{+ %)h such that

h,— 1-6
(6.40) Zp(uo(x)) > M .
Define i, and ipg by
- . b 1 h $
iA H Sup{i Tici+ g and zp(uo(xi )) < ﬁ}
(6.41)
.= . -, 1 h §
ig # Inf{i : £ > 1 + 5 and zp(uo(xi-f)) < ﬁ} .
Let
= 43 1
Xy = ‘lh 7))1 P
(6.42)

Define R c M  and § _C_M; by

=
n

(L e« x(0) e (xyx)}
(6.43)

n
"

{2z e Mp : %, (0) e (x,xz)} '

and let [cf. (5.1))
Ro = R\NK(T} ,

(6.44)
Sy ESN\N(T .

LEMMA (6.5). The following estimate holds:
EM

(6.45) Ixg = x5l < = -
Proof. By (6.40),
® | h §
€= ]_‘.luo(x)ldx » P IxB - xAI .

Solving for xg - xAI gives (6.45).

PROPOSITION (6.6). If Q(0) - Q(T) € then there exists r € R, and s € 50'

2!

(GM)
8(0) = i,, such that the following conditions hold:
L R 3 7
{6.46) {zp(utwl). zp(urlol)} s m @
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We use this to construct two characteristics Y € F; and Y € F; which would intersect
before time T if there were no interactions to deflect the speeds of these

characteristics from their initial speeds at time t = 0. We then assume that Q(0) -

L rh By this assumption, there exists such Yr' Ys which are not cancelled in
(GM)
time [(0,T]. We then use the same assumption to obtain estimates for the change in the

Q(T) <

speeds of Ve and Yg between time t = 0 and t = T. These estimates are sufficient to
guarantee that in time {0,T] the wave speeds of Yr and Ys are not deflected enough
from their initial speeds to prevent them from intersecting before time T. This

intersection implies that one of them is cancelled before time T [cf Property (4.1)].

This is a contradiction and thus we conclude that Q(0) = Q(T) » ! 5 - We first use
(GM)

Lemma (6.1) together with (6.30) or (6.24) to estimate the total variation in 2z

P
contributed by characteristics not in the p~family.

LEMMA (6.4). Our assumptions on uh imply
(6.36) Lolz wfron) -z wlionf <2 .
TN P "
P

Proof: A restatement of Lemma (6.1) in the language of approximate characteristics is that

R L GO

(6.371) |z, (ug101) = z (ugton)| < 5= |y, (0]

for all 2 € M‘\Mpl and if z 1is a coordinate systez of Riemann invariants, then
R L 0

(6.37B) Izp(uzlol) - zp(ultonl < —= lygof .

But by Property (4.2)

(6.38) lvgo] =vycv .
M

Thus statement (6.36) follows directly from either (6.37A) or (6.37B) by estimating the
right hand sides using either (6.30) or (6.34A), respectively.

By (6.26) there exists p, ' € p € n, such that

1. h
s Sup |zp(uo(x))| .
x
For convenience we assume that
(6.39) 1. sup {z_(Px»} ,
M x p O
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In the case that 2z is a coordinate system of Riemann invariants, assume that V is

arbitrary and that

{6.31) Vo<V,
and
(6.32) M>H |,

where M is sufficient for U and V in Lemma (GL3). Under these assumptions, if

1 1
162 2) /2 2
(6.33) h < Min 5 . v S S 7Y ’
G M 30/2 6,72 (12V2 M)G
0 o 0
then
(6.34) o) - om > —15
(GM)

where Q is the quadratic Glimm functional associated with uh [cf (3.11)]. Note that by

(6.25), any uh that satisfies either (6.29) or (6.31), (6.32) must also satisfy

h 1
u (',t)ls < H—

2

for i = 1,2, so in particular

%
{6.34A) M2 e

The remainder of this section is devoted to the proof of Theorem (6.3). From here on
out assume that uh is a given random choice method approximate solution that satisfies
(6.1), (6.33) and either (6.29), (6.30) or (6.30), (6.31). Let I and M denote the
characteristics and index set associated with uh and the time level ty, where
(6.35) 3= mn{[Z] + 1, [E]} .

{Here | ] denotes "greatest integer in".)
The choice of zg for the p-wave strength parameter determines the definition of wave
strength for the characteristics in T [cf (4.6)]. 1In this case, for £ @ Mp,
Yy (t) = zp(ur:[t]) - 2y (e])
defines the signed strength of the characteristic \f) at time t < tj. Recall that
Y!(t) =Y, is constant for t € [tg,t;), and identically zero elsewhere.
The idea in the proof to follows is this: since Iuo(')ls = & and luo(')lo =g,

there must be a "spike” in the initial data of height % and width on the order of ¢M.
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In the analysis to follow, it is important to bound changes in xp by changes in Zg.

This can be done because z + u is a regular map, and VAP-Rp > 0. Define
(T _(arul))

(6.20) A = Inf 30

L
g,u

where ¢ = zp(u) - zp(uL) and the infemum is taken over all values of g, ul such that

L
=T ; e u.
u p(o u)

Now let G, be large enough to satisfy all previous conditions, as well as
-1

(6.21) Gy ? Max{1, A", v} .
Define the following constants:
(6.22) § 2 8(6y = —12 '
64GO
- 1
(6.23) G = G(B,GO) ==z
§
%
(6.24) My ZM,(8,G)) = 5+ .

Choose U to be a sufficiently small neighborhood of u = 0 so that (6.14) holds and

-1}

(6.25) ve fu: fu] < My

for i = 1,2. We prove the follow theorem which is a restatement of Lemma (2) of the
Introduction.

THEOREM (6.3): Let uh be a fixed random choice method approximate solution satisfying

(1). Define
1. .h
(6.26) 4= b,
(6.27) e = (o)
. - 0 1 r’
L
- 2
(6.28) Tz e(em)? .

In the case that 2z is not a coordinate system of Riemann invariants, assume that
(6.29) VgV,
where V is sufficient for U in Lemma (GL2) and

(6.30) v <

Q |o
on
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Ry o 0

(6.13) [zpe (™) Zpe(uly| < > [vP
M

Proof: Statements (6.12) and (6.13) follow directly from (6.3) together with the fact that

Sp(ul‘) makes c2 P.W. c3 contact with Rp(uL) at the state ul [cf. (2.1)].

It is clear from (13) that if U is sufficiently small, then

(6.14) |zp(uR) - zp(uL)l > 2|zp'(uR) - zp-(uL)|

L

for all p-waves with left and right states ul' and uR jp U, p' # p.

The next lemma is a technical but elementary uniform estimate for the speed of a p~

shock in terms of L

LEMMA (6.2): LlLet S denote a p-shock with speed s and left and right states uwl and

uR,  Then there exists a constant My > 0 and a constant Gg > 0 depending only on My

and £, such that, if M > My and

(6.15) |ud| <£‘- . q=0LR ,

z (uL) + z (uR)
P

) - -£ -
(6.16) zp(u) 2 > Tem !
and
- R 1
(6.17) Izp.(u) -z, (e Y| < @ '

for all p' # p, then

(6.18) Xp(u) -8 —G?i .

Proof: Lemma (6.2) expresses in a uniform way the fact of Lemma {(2.1) that

uL +uR

2

(6.19) s = xp( )+ o(1) |s]?2 .
The existence of M; follows from (6.3) and the uniformity follows from the compacthess
of U together with the fact that

3

—A >0 .
9z

PP
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satisfying (6.1) together with
(6.5) Vo E L IRl v

i,p
takes values in U for all x and t, and satisfies the conclusions (3.18) - (3.20) of
Lemma (GL2) as well. We say that M is sufficient for U and V in lemma (GL3) if
(6.6) Vo<V
together with

h .
(6.7) Tug()ag <

X

guarantee that ub

takes values in U for all x, t, and satisfies the conclusions
(3.18) - (3.23) of Lemma (GL3) as well. It is clear from the statements of Lemmas (GL2)
and (GL3) that for every neighborhood U of u = 0 there is a V' such that any

V < V' will be sufficient for U in Lemma (GL2); and in the case of a coordinate system

of Riemann invariants, for every U and V there is an M' such that any M> N will

be sufficient for U and V in Lemma (GL3).

For ue U, let |u Suplzp(u)l, and for functions u : R > U, define

{6.8) ju(x)| = Suplzp(u(x))| .
PeX

(6.9) I\1(°)II‘1 = f:_|u(x)|dx ’

(6.10) bu(e)tg = sup{jutx) |} .
X

The following two lemmas will be needed. The first lemma estimates the change in z

pl

across a p-wave, p' ¥ p:

LEMMA (6.1): Let YP be any p-wave with left and right states uf and uR satisfying

1
(6.11) Jud| €4 ¢+ a=L R .
Then
)
(6.12) |zp.(uR) - zpu(uL)| < Il .

Moreover, if 2z 1is a co rdinate system of Riemann invariants, then
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§6. THE MAIN ESTIMATE

In this section we study approximate solutions uh(x,t) generated by the random
choice method from initial data ug(x) which satisfies
(6.1) uple =) =0 .

We study the approximate solutions in a coordinate system of Riemann invariants if one
exists, and if not, then in a coordinate system that is a good approximation to a
coordinate system of Riemann invariants near u = 0.

Thus, let =z Z (z4,...,Z,) denote a coordinate system of Riemann invariants if one
exists; i.e., in this case assume that the mapping u + 2z is a 1 - 1 smooth map taking
0 + 0, and which satisfies the condition
(6.2) 2«

¢ 9z Re -
k
Such a coordinate system exists if and only if there is a choice of eigenvector fields
{Ri}2=1 such that
(R},Rg) = 0
for all j, k @ {1,...,n}, where [ ] denotes the Lie Bracket. A coordinate system of
Riemann invariants always exists in the case n = 2.

If a coordinate system of Riemann invariants does not exist, then choose z =

(z4s.-+,2,) to satisfy [cf. &, 17]

)
(6.3) e = R (0) .

In either case, let zp be the wave strength parameterization of the p-shock-rarefaction

curve Vp(uL) in a neighborhood of u =0 [cf. (2.1)].
For example, we take o = zp(u) - zp(uL) in the equation u = Tp(o;uL), so that

P = Ry _ L
(6.4) YF = zp(u ) zp(u )

L R

defines the signed strength of a p-wave Yp with left and right states u~” and u" .

We let U denote a neighborhood of u = 0 in which Riemann problemg are uniguely

solvable such that z is a regular wave strength parameter for all p~wave curves in U,

P
and such that Lemma (GL1) {cf. (3.15), (3.16)] applies with this measure of wave strength.

We say that V is sufficient for U in Lemma (GL2) if any approximate solution uh
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thus verifying (5.60).

(5.11), and so in this case

by (5.63) and (5.64).

For the best equidistributed sequences, N(M,a) = Gou-1
2
fu) = Gyu
This completes the proof of Theorem (5.12).
- 42_
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N
|EgC1,M)] = |')_1 E (3|
JE

k - k - k
(5.71) < (F >.1))-m1 (1 5 x1)hN2 A~ thN

Kk k k
< (F A1)hN1 (1 -E A1)hN2 + hN3 + -ﬁ- thN .

But since N = N{u,a),

Substituting into (5.71) gives

k k k 1
lzz(1,u)| < (g A0 -4 AN + (3 A.) 37 hN

k k .3 1
- (1 i~ A1)h(i X1)N + (1 E—X,) ihN

k 1 k
+2hA0hN+ﬁhN+-h_A0hN
1 k
-— + - .
<2MhN JhAOhN
tJ
Now since hN = n’ conclude that

1 1 K
|32(1,N)| <ty {2§+ 3;1\2(0.!1)} .

Similarly,

k

|E2(mﬂ+1,(m+1)N)| < o

1 1
tu {2 g3 Az(mN+1,(m+1)N)} .

Therefore,

M
0 .1 . 1 k 1
[By(igedgh] < m%{: gt 3R RN (e N} o

k 0 .1 1
2 + 3FA2(j2.]l)}tJi

:

k 1
‘{2*3'5“}"Ji

.

< utJ ’
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t
= - - (32
Ep(3132) = xyle ) = x(t ) ch1 Ay (tlae
and let
Aj g letj-] .
By the definition of approximate characteristics,
}2
Eg(31,32) = ) Egi(3)
i=31
where
k k
(E Aj)h, if aj <u Aj
Ez(j) =
k k Y
(H)‘j' 1)h, if aj > 3 -
For j e [1,N],
IAj = Al < AN =ay
Define
N, ={j<N:a, <51}
1 J h 73 !
N,o={jJ<N:a >E}
2 H j h "y ’
I; =00, 1-FX -ag ,
I,=(1-%X2x + 1]
2 [ h 1 AOI [
k -k
I3=[1 'EA1 Ay 1 hA1+14|0] ‘
and set
(5.70) N, 2 N(I,,,N) , n=12,3 .

Then by (5.70)

N1 < N1 + N3 ’

N2 < N2 + N3 .

Now we can estimate

-40~
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h =

1

L
MN
and by definition of {,

N > N(M,a) .

By (5.51),

3
(5.66) j'zolxztcj,+1 = A legu=1] < ag1,3) .
Thus for some interger m, 0 < m €< M-1, we must have
A (0 .1)
279
M

A
(5.67) At(mN,(m+1)N) < < M i
But this implies that for some j € [mN,{m+1)N],

. A
xg + ajh e (x; + Ap(idk, x5 + Ap(3)k + %—) y

or equivalently,

A, k
e [letj], Azltj] + =] n o

a M

3
where i =2(j). This follows because (5.66) and (5.67) imply that there is a fixed open

interval I, I ¢ [AL(j),XL(j) + %Al %- for all j € [mN,(m+1)N], such that |I| >‘% >-1 ’

M
where we use (5.62). Thus by Lemma (5.11),
N(I,oN, (m+1)N) > {{1] - ﬁp N>O0 ,
and so

N(I,mN,(m+1)N) 2 1 .

By definition of approximate characteristics, this implies that

R L 3a
llp(ulltj+]) ALY D) <g
for that value of j € [mN,(m+1)N} for which aj € I. Thus by (5.65),
IYE(tj+)| < 36, % <v o,

. 1 .
This verifies (5.59) since tj € V < t, implies |y | = |y£(:j+)|.

We now verify (5.60). Fix h < §(u)t and set N = t4"'h™! 5o that

J ’

and by (5.64)
N > N(M,2) .

Without loss of generality, we do the case £ € M(tz)\N(t;), the case 2 € N(ts)

being similar. Thus let £ € M(J)\N(tj) be fixed. Define

~39~
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. 0.1
(5.60) h < fluey, tele,c) ,
then

|Egte)]| < wey

for all 2 e M.

(Here (5.59) says that the strength of rarefaction characteristics tends to zero uniformly
with h due to the splitting of characteristics; and (5.60) says that as h + 0,

characteristics move wih characteristic speed.)

Proof: First, for £ € M, define [cf (5.51), Lemma (5.10))

j2 -
(5.61) A (31,32) = jzﬂ Go{B, (1) + B (3) + c,,_(j)'j + Dl(j),j} .

Set A = Max{Z,GOVO}, gso that

(5.62) A (31,32) S GV S A AD>2 ,

0
for all 3j1, j2< J. let a and u > 0 be given. Let M be the smallest integer such
that
(5.63) M > 36 A2 + X7
: 0 h ’
and define
1
(5.64) §(w) EETETET B
where in addition to all previous estimates, Gy satisfies
L R
(5.65) |y2| < Gohp(uz[t] Xp(uzlt] ]
for all & eM;, P = 1,000,n, cg <t < t; < ty. (Recall that the strength |Y£(t)| is
0 1
constant and equal to Iyl| for all t, <t < t,.) Such a Gy exists by Property (4.3)
together with the assumption of genuine nonlinearity. Here N(M,a) is defined in Lemma

(5.11). We first verify (5.59). For this case choose v > 0, and let £ € M; satisfy

t, > V. Fix h < §{u)v, and set

so that
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. Theorem (6.3) is a direct consequence of Proposition (6.6) together with

h

PROPOSITION (6.7): If Q(0) - Q(T) < - where u satisfies our previous assumptions,

(GM)
then either r € MT) or s e N(T).

LB 8, 0, 0,0, 0,

Proof of Theorem (6.3): If Q(0) - Q(T) < 1 5 then by Proposition (6.7) either
(GM)

r € N(T) or s e N(T). But by Proposition (6.6) both r and s are in MN(T). Thus

AR

by contradiction we must have Q(0) - Q(T) ? 1 Pl
(GM)

.

It remains to give a proof of Proposition (6.7). Proposition (6.7) is a consequence

of the following lemmas. The idea is to show that if Q(0) - Q(T) < ——1—5, then for
(GM)

t<T, Az[t] and As[t] are sufficiently close to Ar[OI and As[0], respectively, to

- guarantee that the characteristics Yr and Ys must intersect before time T. Then by

. Proposition (5.2), r e N(T) or s e N(T).

1

- LEMMA (6.8). Assume that Q(0) - (T) < 5. Then
I (GM)
: | A s
(6.70) Lyl 25 . .
Rl
0

= : 8
(6.71) ) |Y2| > -
B sR
i 0
-3

- Proof: By Property (4.2),

. R L
-rv{zp(u‘;(on} = ) |z fon) - =z apion]| .

v e

This together with (6.40) - (6.43) and (6.46) implies that

3 8
- )‘LlYAQI)TM- M
& R
. {Here we use the fact that 2 (uR[tI) -z (uL[t]) is positive [negative] for
p 2 p 4
0 L e M;[l e M;]o respectively.) But
- Llvgl > byl = ) Iyl
. RL" RLR' Ny 2

0
and by Corollary (5.8),
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N(r) ¥ MM

1. Thus by (6.22), § <3z . s0
(GM)

since we assume Q(0) - Q(T) €

. 3 28 [
- P S - 2 —
llell il

0
Similarly, in the case (6.49), (6.50) of Proposition (6.6), we must have

Llvgl =1 Iyl - N%'T)Ivll

1

P o -

s
& w’

x|o»
x|o»

Since s eSg, the case (6.47), (6.48) immediately gives the conclusion (6.71). This

completes the proof of Lemma (6.8).

LEMMA (6.9A): If £ eMp.\ MT), p' # p, and x,(0) @ (x.(0), xg(0)), then in time
[o,T) Yz either intersects all the characteristics in RB‘ (the case p' < p) or elge it

intersects all the characteristics in Sg (the case p' > p).

LEMMA (6.9B): If £ eMp.\ MT), p' #p and Y, intersects Yy ©OF Y, in time
(G, %], then in time [0,T], y,. either intersects all the characteristics in R% or else W

it intersects all the characteristics in Sg.

Proof: Since a is assumed to be best equidistributed, statement (5.60) of Theorem (5.12)

implies that for any £ eMp\N(T), 1¢p<n, and t < T,

- - [t - 1/2
|xg(£) = x,(0) Io kz[t]dtl < uty = (Gght ) .
Thus
¥, CoT _
(6.72) lxg(t) = x,00) - xptl <Gt )2 4z E

where without loss of generality we have taken G, large enough so that

G,
0
Ikl(t) - Xp‘ < M_

for all 2 eMP(J), t <ty
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For the proof of Lemma (6.9A), assume that £ ehlp-\ N(T), p' # p. We do the case
p' < p and Yg intersects Yr in time [0, T/2); i.e., we show that xz(T) - xr.(T) <0

for all r' € Ry [cf. Prop. (5.1)]. By (6.72),

xz(T) - xr,(T) = xz(T) - xt(T) + xr(T) - xr,(T)

(6.73) < Ixg(0) = % (0] + (A, = AT + 28

+ [x (0) = x ,(0)] + “p - xplT + 2E .

Since Yl intersects Yy in time (0, T/2], (6.72) also implies

I - x & - - I
0> xylz) = x (3 > [xy(0) = x (0)) + [, (0) =2 (0)] 3-E .

Moreover, by Lemma (6.5),

[xp00) = x.0(0)] € |xg = 3| € F .

Therefore substituting into (6.73) yields

X (1) = %, (1) € [A,(0) = A (0)] 3+ {-§-‘1 + SE}
5G T
A T . (eM Y, 0
(6.74) < -A g+ {3+ 56t )72 4 o}
106
2eM | 10 V) 0, TA
= {- —_—t = + -} 2=,
=1+ 53w (Sohty) Wl 3
By (6.28) and (6.34A) we have
(6.75) -6271‘”%< ; < 22-<»;- ;
6G“MA 2,55
86° (=)
P25 2
by (6.33), h < (——-—1/-) , so
30/2 ¢f
1
10 1, 1072 ng 72 1
(6.76) Tx (Goht,)2 < (—-II/T ho<g o
and by (6.34A) again,
106
o 1
. —_— < .
(6.77) My 3

Thus (6.74) implies
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xp(T) - xr.(?) <0 .
This completes the proof of Lemma (6.92a).
For the proof of Lemma (6.9B), assume £ eMp.\ N(T), p # p'. We do the case p' < p;
i.e., we gshow that if £ € Mp. , P' <p, and xz(o) e (xt(O),;), then \f intersects

Yoo in time (0,7] for all r' € R(IJ“ It suffices to show that xz(T) - xp0(T) < 0.

xg(T) = X (T) € [x(0) = x,, ()] + [A} = AIT + 28

EM
< T AT + 2B

2G

- [aq 4+ M \73 e
= {1+t A(G BRI }'r).<o

where we have applied (6.75) - (6.77). This completes the proof of Lemma (6.9B).

LEMMA (6.10). Assume that Q(0) - Q(T) < ! 5 Then for q = 0, r and s (cf. (6.63) -
(6.69))

[
(6.78) Bq < ¥

Proof. Write

By Corollary (5.8),

. 0
(6.79) Lol <g .
B_N(T) ™
q
since we assume that Q(0) -~ Q(T) < 1 5+ On the other hand, if L e Bq\ N(T), then
(GM)
Lemma (6.9) implies that Y intersects all the characteristics in either RB‘ or Sg in

L

time [0,T]. For example, assume the case Rf)‘, and define

A* = {c&,xr'> s 2 € Bq\N(T’ and r' €R } .

Then A*' c A(0)\ AT). Thus Lemma (5.7) implies

So
. < —— ,
(6.80) i'hll Iv,. ] 2,7
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But by lLemma (6.8),

since we assume Q(0) - Q(T) < L 5

(GM)
Dlvgb vl =0 1 Iy, IHY v, I}
A 3 r' 2 B \N(T) 2 L 2

A
RD
(6.81)
4 'gi }. IYll M
BA\N(T)
q
Combining (6.80) and (6.81) gives
2G0
(6.82) LIl <—
BA\N(T) §G™M
q
and combining (6.80) and (6.82) gives
4G
s <ot
9 s

This completes the proof of Lemma (6.10).

where we have applied (6.22) and (6.23).

1
2’

If Q(0) - @(T) €
(GM)

LEMMA (6.11):

(6.83)

for g =L and R.

First assume that (6.48) of Proposition (6.6) holds, and write

Proof.
Bg=Llvl= )} + i .
- 8- -
Bs SMN(T)  B_\M(T)
By Corollary (5.8),
G
. 0
Loyl e

B nN(T)

and moreover (as in the proof of Lemma (6.10)), A' < A(0)\A(T) where
A' = {<f,8'>: 2 @ B; , 8 esg’ xs.(o) = xs(o)} .
Thus as in (6.80) - (6.82), Lemma (5.7) implies that

(Here we apply Lemma (5.2).)

_ 4G° s
B> <8 « €<~-,q=1L,R ,
sq 8 GGZH

~56=
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where we apply (6.48) in place of Lemma (6.8).
Now assume (6.49) - (6.52) of Proposition (6.6) holds. In this case (6.50) - (6.52)

satisfy the hypotheses (5.42), (5.43) of Proposition (5.9) with L = %. Since we assume

1 ,6262 8,2

Q(0) - Q(T) < (=)° ¢ G ( ) we can conclude

1
5 and 2
(GM) (GM) 6
B < =
M

for q = L,R. This completes the proof of Lemma (6.11).

LEMMA (6.12): Assume that Q(0) - Q(T) € — 5+ Then
(GM) .
(6.84) Ato] = Ato) > 2o

GOM

Proof. We prove Lemma (6.12) by satisfying the hypotheses of Lemma (6.2). First, (6.46)

implies
L 3
(6.85) zp(ur[0]) > rra
and (6.47), (6.49) imply
R 3
(6.86) zpluglo]) <a
Let u = ul[0], and let S denote the p~shock
= P
Yi 0
8

tet {uu®} denote the left and right states, and ¢ the speed of the p-shock §. By
(5.49) Xs[ol = g, and (6.86) gives
R R 3
0 € z ) € 2 0}) € &=— ,
p(u p(us[ ] m

By (6.39) we must have

zp(“L) < -M- .
Thus
z (u) + 2z (uR) ) 11
2 M '
By (6.85)
z (uL) + 2 (uR)
z_(w) - P > -
P 2 M
-57—
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between uR

and u is bounded by the

Moreover, for p' ¥ p, the difference in zp.

total variation in zge of all waves that lie between x, (0) and x,00) at t = 0. By

Property (4.3), this can be estimated by

- R R L L
|zp,(u) S )| < B, + b |zp,(ul[0]) - zp,(ul[0])|

) 4
(ﬁ#é-z_s '
M M M

where we have applied Lemma (6.4) and Lemma (6.10) in the second inequality. Thus Lemma

1
(6.2) applies with L = M to giwe
A(_)-°>_L
p GoM
Therefore we conclude

-2 (0 - -
A Lol - A (0] Ap(u) °’G°u .

Proof of Proposition (6.7): Assume that Q(T) - Q(0) ¢

1 3 We show that Yz
(GM)
intersects Ys in time (0, T/2]. By Proposition (5.2) this implies that either r € N(T)

or 8 € N(T). Thus it suffices to show that xg(T/2) = xr(T/Z) < 0. By (5.53),

1
- - - 2
Aglr/2) = A [01] < G B + B + [Q(0)-Q(T)}"2}

6.87
( ) <G {6 +841 } < 3595
olM "M ™ " Tm '

where we applied Lemmas (6.10) and (6.11). Therefore we can use (5.42) and (5.44) to

obtain 1
T/2 /2
xg(T/2) € x_(0) + [(7% A _(t)at + (Gght )
(6.88)
<x(0)+A1013+36G°3+(Gm: Y2 o
-} 8 2 2 0 J
Similarly,
356
T _ 0T _ 1/2
(6.89) % (T/2) 2 x (0) + ) _[0] 5 = —— 5 = (Gjht,) .

Subtracting (6.89) from (6.88) gives
T
xs(T/Z) - x (T/2) < [x_(0) = x (0)] + {As[ol Ar[O]) 3

(6.90) 366,7 v, ;
s * (Gont )2}

+ 2{
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and by Lemmas (6.5) and (6.12) respectively,
EM
|xs(0) xr(0)| <x =

- -1
As[m »\rtol < .

G
Therefore
38G. T 1
- €M /2 _ T
X (T/2) = % (T/2) < {g~+ —— + 2(Gyht ) m}
{6.91) 1
2G M2€ 4G_M(G ht )/2
- et + 20 I _ g I,
—3T (i T G N
By (6.28) and (6.22), (6.23),
ZGDMZe 2G0M2e 2, 5 ;
(6.92) 5T = 22‘—-5-"25G0<—3- .
6eG M G

By (6.22)
(6.93) 6G36 <% .
By (6.28) and (6.33),

1 1

4G MGt )2 afZ )/ *n’2 o2 w2 b \
(6.94) < < <= .
T 72 2 12/7 mg/z) 3

Finally, putting (6.92) - (6.94) into (6.91) yields

xg(T/2) - x%.(7/2) <0 .
This completes the proof of Proposition (6.7), and hence also completes the proof of
Theorem (6.3). The proof of Theorem (6.3) also applies to the case of periodic data, in

which case & | 10 ] 'S and Q(t) are defined on each period.
L
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